极乐门资源网 Design By www.ioogu.com
如下所示:
#coding:utf8 import pandas as pd import numpy as np from pandas import Series,DataFrame # 如果有id列,则需先删除id列再进行对应操作,最后再补上 # 统计的时候不需要用到id列,删除的时候需要考虑 # delete row def row_del(df, num_percent, label_len = 0): #print list(df.count(axis=1)) col_num = len(list(list(df.values)[1])) - label_len # -1为考虑带标签 if col_num<0: print 'Error' #print int(col_num*num_percent) return df.dropna(axis=0, how='any', thresh=int(col_num*num_percent)) # 如果有字符串类型,则报错 # data normalization -1 to 1 # label_col: 不需考虑的类标,可以为字符串或字符串列表 # 数值类型统一到float64 def data_normalization(df, label_col = []): lab_len = len(label_col) print label_col if lab_len>0: df_temp = df.drop(label_col, axis = 1) df_lab = df[label_col] print df_lab else: df_temp = df max_val = list(df_temp.max(axis=0)) min_val = list(df_temp.min(axis=0)) mean_val = list((df_temp.max(axis=0) + df_temp.min(axis=0)) / 2) nan_values = df_temp.isnull().values row_num = len(list(df_temp.values)) col_num = len(list(df_temp.values)[1]) for rn in range(row_num): #data_values_r = list(data_values[rn]) nan_values_r = list(nan_values[rn]) for cn in range(col_num): if nan_values_r[cn] == False: df_temp.values[rn][cn] = 2 * (df_temp.values[rn][cn] - mean_val[cn])/(max_val[cn] - min_val[cn]) else: print 'Wrong' for index,lab in enumerate(label_col): df_temp.insert(index, lab, df_lab[lab]) return df_temp # 创建一个带有缺失值的数据框: df = pd.DataFrame(np.random.randn(5,3), index=list('abcde'), columns=['one','two','three']) df.ix[1,:-1]=np.nan df.ix[1:-1,2]=np.nan df.ix[0,0]=int(1) df.ix[2,2]='abc' # 查看一下数据内容: print '\ndf1' print df print row_del(df, 0.8) print '-------------------------' df = data_normalization(df, ['two', 'three']) print df print df.dtypes print (type(df.ix[2,2]))
以上这篇pandas 数据归一化以及行删除例程的方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。
标签:
pandas,数据归一化
极乐门资源网 Design By www.ioogu.com
极乐门资源网
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件!
如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
极乐门资源网 Design By www.ioogu.com
暂无pandas 数据归一化以及行删除例程的方法的评论...
更新日志
2025年01月10日
2025年01月10日
- 小骆驼-《草原狼2(蓝光CD)》[原抓WAV+CUE]
- 群星《欢迎来到我身边 电影原声专辑》[320K/MP3][105.02MB]
- 群星《欢迎来到我身边 电影原声专辑》[FLAC/分轨][480.9MB]
- 雷婷《梦里蓝天HQⅡ》 2023头版限量编号低速原抓[WAV+CUE][463M]
- 群星《2024好听新歌42》AI调整音效【WAV分轨】
- 王思雨-《思念陪着鸿雁飞》WAV
- 王思雨《喜马拉雅HQ》头版限量编号[WAV+CUE]
- 李健《无时无刻》[WAV+CUE][590M]
- 陈奕迅《酝酿》[WAV分轨][502M]
- 卓依婷《化蝶》2CD[WAV+CUE][1.1G]
- 群星《吉他王(黑胶CD)》[WAV+CUE]
- 齐秦《穿乐(穿越)》[WAV+CUE]
- 发烧珍品《数位CD音响测试-动向效果(九)》【WAV+CUE】
- 邝美云《邝美云精装歌集》[DSF][1.6G]
- 吕方《爱一回伤一回》[WAV+CUE][454M]