邻近算法(k-NearestNeighbor) 是机器学习中的一种分类(classification)算法,也是机器学习中最简单的算法之一了。虽然很简单,但在解决特定问题时却能发挥很好的效果。因此,学习kNN算法是机器学习入门的一个很好的途径。
kNN算法的思想非常的朴素,它选取k个离测试点最近的样本点,输出在这k个样本点中数量最多的标签(label)。我们假设每一个样本有m个特征值(property),则一个样本的可以用一个m维向量表示: X =( x1,x2,... , xm ), 同样地,测试点的特征值也可表示成:Y =( y1,y2,... , ym )。那我们怎么定义这两者之间的“距离”呢?
在二维空间中,有:d2 = ( x1 - y1 )2 + ( x2 - y2 )2 , 在三维空间中,两点的距离被定义为:d2 = ( x1 - y1 )2 + ( x2 - y2 )2 + ( x3 - y3 )2 。我们可以据此推广到m维空间中,定义m维空间的距离:d2 = ( x1 - y1 )2 + ( x2 - y2 )2 + ...... + ( xm - ym )2 。要实现kNN算法,我们只需要计算出每一个样本点与测试点的距离,选取距离最近的k个样本,获取他们的标签(label) ,然后找出k个样本中数量最多的标签,返回该标签。
在开始实现算法之前,我们要考虑一个问题,不同特征的特征值范围可能有很大的差别,例如,我们要分辨一个人的性别,一个女生的身高是1.70m,体重是60kg,一个男生的身高是1.80m,体重是70kg,而一个未知性别的人的身高是1.81m, 体重是64kg,这个人与女生数据点的“距离”的平方 d2 = ( 1.70 - 1.81 )2 + ( 60 - 64 )2 = 0.0121 + 16.0 = 16.0121,而与男生数据点的“距离”的平方d2 = ( 1.80 - 1.81 )2 + ( 70 - 64 )2 = 0.0001 + 36.0 = 36.0001 。可见,在这种情况下,身高差的平方相对于体重差的平方基本可以忽略不计,但是身高对于辨别性别来说是十分重要的。为了解决这个问题,就需要将数据标准化(normalize),把每一个特征值除以该特征的范围,保证标准化后每一个特征值都在0~1之间。我们写一个normData函数来执行标准化数据集的工作:
def normData(dataSet): maxVals = dataSet.max(axis=0) minVals = dataSet.min(axis=0) ranges = maxVals - minVals retData = (dataSet - minVals) / ranges return retData, ranges, minVals
然后开始实现kNN算法:
def kNN(dataSet, labels, testData, k): distSquareMat = (dataSet - testData) ** 2 # 计算差值的平方 distSquareSums = distSquareMat.sum(axis=1) # 求每一行的差值平方和 distances = distSquareSums ** 0.5 # 开根号,得出每个样本到测试点的距离 sortedIndices = distances.argsort() # 排序,得到排序后的下标 indices = sortedIndices[:k] # 取最小的k个 labelCount = {} # 存储每个label的出现次数 for i in indices: label = labels[i] labelCount[label] = labelCount.get(label, 0) + 1 # 次数加一 sortedCount = sorted(labelCount.items(), key=opt.itemgetter(1), reverse=True) # 对label出现的次数从大到小进行排序 return sortedCount[0][0] # 返回出现次数最大的label
注意,在testData作为参数传入kNN函数之前,需要经过标准化。
我们用几个小数据验证一下kNN函数是否能正常工作:
if __name__ == "__main__": dataSet = np.array([[2, 3], [6, 8]]) normDataSet, ranges, minVals = normData(dataSet) labels = ['a', 'b'] testData = np.array([3.9, 5.5]) normTestData = (testData - minVals) / ranges result = kNN(normDataSet, labels, normTestData, 1) print(result)
结果输出 a ,与预期结果一致。
完整代码:
import numpy as np from math import sqrt import operator as opt def normData(dataSet): maxVals = dataSet.max(axis=0) minVals = dataSet.min(axis=0) ranges = maxVals - minVals retData = (dataSet - minVals) / ranges return retData, ranges, minVals def kNN(dataSet, labels, testData, k): distSquareMat = (dataSet - testData) ** 2 # 计算差值的平方 distSquareSums = distSquareMat.sum(axis=1) # 求每一行的差值平方和 distances = distSquareSums ** 0.5 # 开根号,得出每个样本到测试点的距离 sortedIndices = distances.argsort() # 排序,得到排序后的下标 indices = sortedIndices[:k] # 取最小的k个 labelCount = {} # 存储每个label的出现次数 for i in indices: label = labels[i] labelCount[label] = labelCount.get(label, 0) + 1 # 次数加一 sortedCount = sorted(labelCount.items(), key=opt.itemgetter(1), reverse=True) # 对label出现的次数从大到小进行排序 return sortedCount[0][0] # 返回出现次数最大的label if __name__ == "__main__": dataSet = np.array([[2, 3], [6, 8]]) normDataSet, ranges, minVals = normData(dataSet) labels = ['a', 'b'] testData = np.array([3.9, 5.5]) normTestData = (testData - minVals) / ranges result = kNN(normDataSet, labels, normTestData, 1) print(result)
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。
Python实现kNN算法
《魔兽世界》大逃杀!60人新游玩模式《强袭风暴》3月21日上线
暴雪近日发布了《魔兽世界》10.2.6 更新内容,新游玩模式《强袭风暴》即将于3月21 日在亚服上线,届时玩家将前往阿拉希高地展开一场 60 人大逃杀对战。
艾泽拉斯的冒险者已经征服了艾泽拉斯的大地及遥远的彼岸。他们在对抗世界上最致命的敌人时展现出过人的手腕,并且成功阻止终结宇宙等级的威胁。当他们在为即将于《魔兽世界》资料片《地心之战》中来袭的萨拉塔斯势力做战斗准备时,他们还需要在熟悉的阿拉希高地面对一个全新的敌人──那就是彼此。在《巨龙崛起》10.2.6 更新的《强袭风暴》中,玩家将会进入一个全新的海盗主题大逃杀式限时活动,其中包含极高的风险和史诗级的奖励。
《强袭风暴》不是普通的战场,作为一个独立于主游戏之外的活动,玩家可以用大逃杀的风格来体验《魔兽世界》,不分职业、不分装备(除了你在赛局中捡到的),光是技巧和战略的强弱之分就能决定出谁才是能坚持到最后的赢家。本次活动将会开放单人和双人模式,玩家在加入海盗主题的预赛大厅区域前,可以从强袭风暴角色画面新增好友。游玩游戏将可以累计名望轨迹,《巨龙崛起》和《魔兽世界:巫妖王之怒 经典版》的玩家都可以获得奖励。
更新日志
- 小骆驼-《草原狼2(蓝光CD)》[原抓WAV+CUE]
- 群星《欢迎来到我身边 电影原声专辑》[320K/MP3][105.02MB]
- 群星《欢迎来到我身边 电影原声专辑》[FLAC/分轨][480.9MB]
- 雷婷《梦里蓝天HQⅡ》 2023头版限量编号低速原抓[WAV+CUE][463M]
- 群星《2024好听新歌42》AI调整音效【WAV分轨】
- 王思雨-《思念陪着鸿雁飞》WAV
- 王思雨《喜马拉雅HQ》头版限量编号[WAV+CUE]
- 李健《无时无刻》[WAV+CUE][590M]
- 陈奕迅《酝酿》[WAV分轨][502M]
- 卓依婷《化蝶》2CD[WAV+CUE][1.1G]
- 群星《吉他王(黑胶CD)》[WAV+CUE]
- 齐秦《穿乐(穿越)》[WAV+CUE]
- 发烧珍品《数位CD音响测试-动向效果(九)》【WAV+CUE】
- 邝美云《邝美云精装歌集》[DSF][1.6G]
- 吕方《爱一回伤一回》[WAV+CUE][454M]