极乐门资源网 Design By www.ioogu.com

如下代码可以计算输入的两张图像的结构相似度(SSIM),结果与matlab计算结果一致

// An highlighted block
import cv2
import numpy as np
def ssim(img1, img2):
  C1 = (0.01 * 255)**2
  C2 = (0.03 * 255)**2
  img1 = img1.astype(np.float64)
  img2 = img2.astype(np.float64)
  kernel = cv2.getGaussianKernel(11, 1.5)
  window = np.outer(kernel, kernel.transpose())
  mu1 = cv2.filter2D(img1, -1, window)[5:-5, 5:-5] # valid
  mu2 = cv2.filter2D(img2, -1, window)[5:-5, 5:-5]
  mu1_sq = mu1**2
  mu2_sq = mu2**2
  mu1_mu2 = mu1 * mu2
  sigma1_sq = cv2.filter2D(img1**2, -1, window)[5:-5, 5:-5] - mu1_sq
  sigma2_sq = cv2.filter2D(img2**2, -1, window)[5:-5, 5:-5] - mu2_sq
  sigma12 = cv2.filter2D(img1 * img2, -1, window)[5:-5, 5:-5] - mu1_mu2
  ssim_map = ((2 * mu1_mu2 + C1) * (2 * sigma12 + C2)) / ((mu1_sq + mu2_sq + C1) *
                              (sigma1_sq + sigma2_sq + C2))
  return ssim_map.mean()
def calculate_ssim(img1, img2):
  '''calculate SSIM
  the same outputs as MATLAB's
  img1, img2: [0, 255]
  '''
  if not img1.shape == img2.shape:
    raise ValueError('Input images must have the same dimensions.')
  if img1.ndim == 2:
    return ssim(img1, img2)
  elif img1.ndim == 3:
    if img1.shape[2] == 3:
      ssims = []
      for i in range(3):
        ssims.append(ssim(img1, img2))
      return np.array(ssims).mean()
    elif img1.shape[2] == 1:
      return ssim(np.squeeze(img1), np.squeeze(img2))
  else:
    raise ValueError('Wrong input image dimensions.')

img1 = cv2.imread("Test2_HR.bmp", 0)
img2 = cv2.imread("Test2_LR2.bmp", 0)
ss = calculate_ssim(img1, img2)
print(ss)

总结

以上所述是小编给大家介绍的在python中计算ssim的方法(与Matlab结果一致),希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对网站的支持!
如果你觉得本文对你有帮助,欢迎转载,烦请注明出处,谢谢!

标签:
python,计算ssim,python,ssim

极乐门资源网 Design By www.ioogu.com
极乐门资源网 免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
极乐门资源网 Design By www.ioogu.com

评论“在python中计算ssim的方法(与Matlab结果一致)”

暂无在python中计算ssim的方法(与Matlab结果一致)的评论...

RTX 5090要首发 性能要翻倍!三星展示GDDR7显存

三星在GTC上展示了专为下一代游戏GPU设计的GDDR7内存。

首次推出的GDDR7内存模块密度为16GB,每个模块容量为2GB。其速度预设为32 Gbps(PAM3),但也可以降至28 Gbps,以提高产量和初始阶段的整体性能和成本效益。

据三星表示,GDDR7内存的能效将提高20%,同时工作电压仅为1.1V,低于标准的1.2V。通过采用更新的封装材料和优化的电路设计,使得在高速运行时的发热量降低,GDDR7的热阻比GDDR6降低了70%。