分析
JavaScript 只有一种数字类型 Number ,而且在Javascript中所有的数字都是以IEEE-754标准格式表示的。 浮点数的精度问题不是JavaScript特有的,因为有些小数以二进制表示位数是无穷的:
十进制 二进制
0.1 0.0001 1001 1001 1001 ...
0.2 0.0011 0011 0011 0011 ...
0.3 0.0100 1100 1100 1100 ...
0.4 0.0110 0110 0110 0110 ...
0.5 0.1
0.6 0.1001 1001 1001 1001 ...
所以比如 1.1 ,其程序实际上无法真正的表示 ‘1.1',而只能做到一定程度上的准确,这是无法避免的精度丢失:
1.09999999999999999
在JavaScript中问题还要复杂些,这里只给一些在Chrome中测试数据:
输入 输出
1.0-0.9 == 0.1 False
1.0-0.8 == 0.2 False
1.0-0.7 == 0.3 False
1.0-0.6 == 0.4 True
1.0-0.5 == 0.5 True
1.0-0.4 == 0.6 True
1.0-0.3 == 0.7 True
1.0-0.2 == 0.8 True
1.0-0.1 == 0.9 True
解决
那如何来避免这类 1.0-0.9 != 0.1 的非bug型问题发生呢?下面给出一种目前用的比较多的解决方案, 在判断浮点运算结果前对计算结果进行精度缩小,因为在精度缩小的过程总会自动四舍五入:
复制代码 代码如下:
(1.0-0.9).toFixed(digits) // toFixed() 精度参数须在 0 与20 之间
parseFloat((1.0-0.9).toFixed(10)) === 0.1 // 结果为True
parseFloat((1.0-0.8).toFixed(10)) === 0.2 // 结果为True
parseFloat((1.0-0.7).toFixed(10)) === 0.3 // 结果为True
parseFloat((11.0-11.8).toFixed(10)) === -0.8 // 结果为True
方法提炼
复制代码 代码如下:
// 通过isEqual工具方法判断数值是否相等
function isEqual(number1, number2, digits){
digits = digits == undefined? 10: digits; // 默认精度为10
return number1.toFixed(digits) === number2.toFixed(digits);
}
isEqual(1.0-0.7, 0.3); // return true
// 原生扩展方式,更喜欢面向对象的风格
Number.prototype.isEqual = function(number, digits){
digits = digits == undefined? 10: digits; // 默认精度为10
return this.toFixed(digits) === number.toFixed(digits);
}
(1.0-0.7).isEqual(0.3); // return true
Javascript,浮点运算
更新日志
- 小骆驼-《草原狼2(蓝光CD)》[原抓WAV+CUE]
- 群星《欢迎来到我身边 电影原声专辑》[320K/MP3][105.02MB]
- 群星《欢迎来到我身边 电影原声专辑》[FLAC/分轨][480.9MB]
- 雷婷《梦里蓝天HQⅡ》 2023头版限量编号低速原抓[WAV+CUE][463M]
- 群星《2024好听新歌42》AI调整音效【WAV分轨】
- 王思雨-《思念陪着鸿雁飞》WAV
- 王思雨《喜马拉雅HQ》头版限量编号[WAV+CUE]
- 李健《无时无刻》[WAV+CUE][590M]
- 陈奕迅《酝酿》[WAV分轨][502M]
- 卓依婷《化蝶》2CD[WAV+CUE][1.1G]
- 群星《吉他王(黑胶CD)》[WAV+CUE]
- 齐秦《穿乐(穿越)》[WAV+CUE]
- 发烧珍品《数位CD音响测试-动向效果(九)》【WAV+CUE】
- 邝美云《邝美云精装歌集》[DSF][1.6G]
- 吕方《爱一回伤一回》[WAV+CUE][454M]